ffcx.ir.representation
Compiler stage 2: Code representation.
Module computes intermediate representations of forms, elements and dofmaps. For each UFC function, we extract the data needed for code generation at a later stage.
The representation should conform strictly to the naming and order of functions in UFC. Thus, for code generation of the function “foo”, one should only need to use the data stored in the intermediate representation under the key “foo”.
Functions
|
Compute intermediate representation. |
Classes
|
Intermediate representation of a custom element. |
|
Intermediate representation of data. |
|
Intermediate representation of a DOF map. |
|
Intermediate representation of an element. |
|
Intermediate representation of an expression. |
|
Intermediate representation of a form. |
|
Intermediate representation of an integral. |
|
Intermediate representation of a quadrature rule. |
- class ffcx.ir.representation.CustomElementIR(cell_type: CellType, value_shape: tuple[int, ...], wcoeffs: ndarray[Any, dtype[float64]], x: list[list[ndarray[Any, dtype[float64]]]], M: list[list[ndarray[Any, dtype[float64]]]], map_type: MapType, sobolev_space: SobolevSpace, interpolation_nderivs: int, discontinuous: bool, embedded_subdegree: int, embedded_superdegree: int, polyset_type: PolysetType)[source]
Bases:
NamedTuple
Intermediate representation of a custom element.
Create new instance of CustomElementIR(cell_type, value_shape, wcoeffs, x, M, map_type, sobolev_space, interpolation_nderivs, discontinuous, embedded_subdegree, embedded_superdegree, polyset_type)
- cell_type: CellType
Alias for field number 0
- discontinuous: bool
Alias for field number 8
- embedded_subdegree: int
Alias for field number 9
- embedded_superdegree: int
Alias for field number 10
- interpolation_nderivs: int
Alias for field number 7
- map_type: MapType
Alias for field number 5
- polyset_type: PolysetType
Alias for field number 11
- sobolev_space: SobolevSpace
Alias for field number 6
- value_shape: tuple[int, ...]
Alias for field number 1
- class ffcx.ir.representation.DataIR(elements: list[ElementIR], dofmaps: list[DofMapIR], integrals: list[IntegralIR], forms: list[FormIR], expressions: list[ExpressionIR])[source]
Bases:
NamedTuple
Intermediate representation of data.
Create new instance of DataIR(elements, dofmaps, integrals, forms, expressions)
- expressions: list[ExpressionIR]
Alias for field number 4
- integrals: list[IntegralIR]
Alias for field number 2
- class ffcx.ir.representation.DofMapIR(id: int, name: str, signature: str, num_global_support_dofs: int, num_element_support_dofs: int, entity_dofs: list[list[list[int]]], entity_closure_dofs: list[list[list[int]]], num_entity_closure_dofs: list[list[int]], num_sub_dofmaps: int, sub_dofmaps: list[str], block_size: int)[source]
Bases:
NamedTuple
Intermediate representation of a DOF map.
Create new instance of DofMapIR(id, name, signature, num_global_support_dofs, num_element_support_dofs, entity_dofs, entity_closure_dofs, num_entity_closure_dofs, num_sub_dofmaps, sub_dofmaps, block_size)
- block_size: int
Alias for field number 10
- entity_closure_dofs: list[list[list[int]]]
Alias for field number 6
- entity_dofs: list[list[list[int]]]
Alias for field number 5
- id: int
Alias for field number 0
- name: str
Alias for field number 1
- num_element_support_dofs: int
Alias for field number 4
- num_entity_closure_dofs: list[list[int]]
Alias for field number 7
- num_global_support_dofs: int
Alias for field number 3
- num_sub_dofmaps: int
Alias for field number 8
- signature: str
Alias for field number 2
- sub_dofmaps: list[str]
Alias for field number 9
- class ffcx.ir.representation.ElementIR(id: int, name: str, signature: str, cell_shape: str, topological_dimension: int, space_dimension: int, reference_value_shape: tuple[int, ...], degree: int, num_sub_elements: int, block_size: int, sub_elements: list[str], element_type: str, entity_dofs: list[list[list[int]]], lagrange_variant: LagrangeVariant, dpc_variant: DPCVariant, basix_family: ElementFamily, basix_cell: CellType, discontinuous: bool, custom_element: CustomElementIR, custom_quadrature: QuadratureIR)[source]
Bases:
NamedTuple
Intermediate representation of an element.
Create new instance of ElementIR(id, name, signature, cell_shape, topological_dimension, space_dimension, reference_value_shape, degree, num_sub_elements, block_size, sub_elements, element_type, entity_dofs, lagrange_variant, dpc_variant, basix_family, basix_cell, discontinuous, custom_element, custom_quadrature)
- basix_cell: CellType
Alias for field number 16
- basix_family: ElementFamily
Alias for field number 15
- block_size: int
Alias for field number 9
- cell_shape: str
Alias for field number 3
- custom_element: CustomElementIR
Alias for field number 18
- custom_quadrature: QuadratureIR
Alias for field number 19
- degree: int
Alias for field number 7
- discontinuous: bool
Alias for field number 17
- dpc_variant: DPCVariant
Alias for field number 14
- element_type: str
Alias for field number 11
- entity_dofs: list[list[list[int]]]
Alias for field number 12
- id: int
Alias for field number 0
- lagrange_variant: LagrangeVariant
Alias for field number 13
- name: str
Alias for field number 1
- num_sub_elements: int
Alias for field number 8
- reference_value_shape: tuple[int, ...]
Alias for field number 6
- signature: str
Alias for field number 2
- space_dimension: int
Alias for field number 5
- sub_elements: list[str]
Alias for field number 10
- topological_dimension: int
Alias for field number 4
- class ffcx.ir.representation.ExpressionIR(name: str, element_dimensions: dict[_ElementBase, int], options: dict, unique_tables: dict[str, ndarray[Any, dtype[float64]]], unique_table_types: dict[str, str], integrand: dict[QuadratureRule, dict], coefficient_numbering: dict[Coefficient, int], coefficient_offsets: dict[Coefficient, int], integral_type: str, entitytype: str, tensor_shape: list[int], expression_shape: list[int], original_constant_offsets: dict[Constant, int], points: ndarray[Any, dtype[float64]], coefficient_names: list[str], constant_names: list[str], needs_facet_permutations: bool, function_spaces: dict[str, tuple[str, str, str, int, CellType, LagrangeVariant, tuple[int]]], name_from_uflfile: str, original_coefficient_positions: list[int])[source]
Bases:
NamedTuple
Intermediate representation of an expression.
Create new instance of ExpressionIR(name, element_dimensions, options, unique_tables, unique_table_types, integrand, coefficient_numbering, coefficient_offsets, integral_type, entitytype, tensor_shape, expression_shape, original_constant_offsets, points, coefficient_names, constant_names, needs_facet_permutations, function_spaces, name_from_uflfile, original_coefficient_positions)
- coefficient_names: list[str]
Alias for field number 14
- coefficient_numbering: dict[Coefficient, int]
Alias for field number 6
- coefficient_offsets: dict[Coefficient, int]
Alias for field number 7
- constant_names: list[str]
Alias for field number 15
- element_dimensions: dict[_ElementBase, int]
Alias for field number 1
- entitytype: str
Alias for field number 9
- expression_shape: list[int]
Alias for field number 11
- function_spaces: dict[str, tuple[str, str, str, int, CellType, LagrangeVariant, tuple[int]]]
Alias for field number 17
- integral_type: str
Alias for field number 8
- integrand: dict[QuadratureRule, dict]
Alias for field number 5
- name: str
Alias for field number 0
- name_from_uflfile: str
Alias for field number 18
- needs_facet_permutations: bool
Alias for field number 16
- options: dict
Alias for field number 2
- original_coefficient_positions: list[int]
Alias for field number 19
- original_constant_offsets: dict[Constant, int]
Alias for field number 12
- tensor_shape: list[int]
Alias for field number 10
- unique_table_types: dict[str, str]
Alias for field number 4
- class ffcx.ir.representation.FormIR(id: int, name: str, signature: str, rank: int, num_coefficients: int, num_constants: int, name_from_uflfile: str, function_spaces: dict[str, tuple[str, str, str, int, CellType, LagrangeVariant, tuple[int]]], original_coefficient_position: list[int], coefficient_names: list[str], constant_names: list[str], finite_elements: list[str], dofmaps: list[str], integral_names: dict[str, list[str]], subdomain_ids: dict[str, list[int]])[source]
Bases:
NamedTuple
Intermediate representation of a form.
Create new instance of FormIR(id, name, signature, rank, num_coefficients, num_constants, name_from_uflfile, function_spaces, original_coefficient_position, coefficient_names, constant_names, finite_elements, dofmaps, integral_names, subdomain_ids)
- coefficient_names: list[str]
Alias for field number 9
- constant_names: list[str]
Alias for field number 10
- dofmaps: list[str]
Alias for field number 12
- finite_elements: list[str]
Alias for field number 11
- function_spaces: dict[str, tuple[str, str, str, int, CellType, LagrangeVariant, tuple[int]]]
Alias for field number 7
- id: int
Alias for field number 0
- integral_names: dict[str, list[str]]
Alias for field number 13
- name: str
Alias for field number 1
- name_from_uflfile: str
Alias for field number 6
- num_coefficients: int
Alias for field number 4
- num_constants: int
Alias for field number 5
- original_coefficient_position: list[int]
Alias for field number 8
- rank: int
Alias for field number 3
- signature: str
Alias for field number 2
- subdomain_ids: dict[str, list[int]]
Alias for field number 14
- class ffcx.ir.representation.Integral(integrand, integral_type, domain, subdomain_id, metadata, subdomain_data)[source]
Bases:
object
An integral over a single domain.
Initialise.
- reconstruct(integrand=None, integral_type=None, domain=None, subdomain_id=None, metadata=None, subdomain_data=None)[source]
Construct a new Integral object with some properties replaced with new values.
Example
<a = Integral instance> b = a.reconstruct(expand_compounds(a.integrand())) c = a.reconstruct(metadata={‘quadrature_degree’:2})
- class ffcx.ir.representation.IntegralIR(integral_type: str, subdomain_id: str | tuple[int, ...] | int, rank: int, geometric_dimension: int, topological_dimension: int, entitytype: str, num_facets: int, num_vertices: int, enabled_coefficients: list[bool], element_dimensions: dict[_ElementBase, int], element_ids: dict[_ElementBase, int], tensor_shape: list[int], coefficient_numbering: dict[Coefficient, int], coefficient_offsets: dict[Coefficient, int], original_constant_offsets: dict[Constant, int], options: dict, cell_shape: str, unique_tables: dict[str, ndarray[Any, dtype[float64]]], unique_table_types: dict[str, str], integrand: dict[QuadratureRule, dict], name: str, needs_facet_permutations: bool, coordinate_element: str, sum_factorization: bool)[source]
Bases:
NamedTuple
Intermediate representation of an integral.
Create new instance of IntegralIR(integral_type, subdomain_id, rank, geometric_dimension, topological_dimension, entitytype, num_facets, num_vertices, enabled_coefficients, element_dimensions, element_ids, tensor_shape, coefficient_numbering, coefficient_offsets, original_constant_offsets, options, cell_shape, unique_tables, unique_table_types, integrand, name, needs_facet_permutations, coordinate_element, sum_factorization)
- cell_shape: str
Alias for field number 16
- coefficient_numbering: dict[Coefficient, int]
Alias for field number 12
- coefficient_offsets: dict[Coefficient, int]
Alias for field number 13
- coordinate_element: str
Alias for field number 22
- element_dimensions: dict[_ElementBase, int]
Alias for field number 9
- element_ids: dict[_ElementBase, int]
Alias for field number 10
- enabled_coefficients: list[bool]
Alias for field number 8
- entitytype: str
Alias for field number 5
- geometric_dimension: int
Alias for field number 3
- integral_type: str
Alias for field number 0
- integrand: dict[QuadratureRule, dict]
Alias for field number 19
- name: str
Alias for field number 20
- needs_facet_permutations: bool
Alias for field number 21
- num_facets: int
Alias for field number 6
- num_vertices: int
Alias for field number 7
- options: dict
Alias for field number 15
- original_constant_offsets: dict[Constant, int]
Alias for field number 14
- rank: int
Alias for field number 2
- subdomain_id: str | tuple[int, ...] | int
Alias for field number 1
- sum_factorization: bool
Alias for field number 23
- tensor_shape: list[int]
Alias for field number 11
- topological_dimension: int
Alias for field number 4
- unique_table_types: dict[str, str]
Alias for field number 18
- class ffcx.ir.representation.QuadratureIR(cell_shape: str, points: ndarray[Any, dtype[float64]], weights: ndarray[Any, dtype[float64]])[source]
Bases:
NamedTuple
Intermediate representation of a quadrature rule.
Create new instance of QuadratureIR(cell_shape, points, weights)
- cell_shape: str
Alias for field number 0
- class ffcx.ir.representation.QuadratureRule(points, weights, tensor_factors=None)[source]
Bases:
object
A quadrature rule.
Initialise.
- class ffcx.ir.representation.UFLData(form_data: tuple[FormData, ...], unique_elements: list[_ElementBase], element_numbers: dict[_ElementBase, int], unique_coordinate_elements: list[_ElementBase], expressions: list[tuple[Expr, ndarray[Any, dtype[float64]], Expr]])[source]
Bases:
NamedTuple
UFL data.
Create new instance of UFLData(form_data, unique_elements, element_numbers, unique_coordinate_elements, expressions)
- element_numbers: dict[_ElementBase, int]
Alias for field number 2
- form_data: tuple[FormData, ...]
Alias for field number 0
- unique_coordinate_elements: list[_ElementBase]
Alias for field number 3
- unique_elements: list[_ElementBase]
Alias for field number 1
- ffcx.ir.representation.compute_integral_ir(cell, integral_type, entitytype, integrands, argument_shape, p, visualise)[source]
Compute intermediate representation for an integral.
- ffcx.ir.representation.compute_ir(analysis: UFLData, object_names, prefix, options, visualise)[source]
Compute intermediate representation.